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Abstract 

As cloud computing services expand, multi-tenant systems face growing challenges in ensuring the 

integrity and auditability of distributed logs. Traditional logging mechanisms are susceptible to 

tampering, especially in shared environments where access is often decentralized. This paper 

investigates the feasibility of using blockchain technology to create tamper-proof, distributed logging 

systems. We design a lightweight logging framework based on Ethereum’s private blockchain, where 

log entries are hashed and stored as transactions, preserving both order and immutability. Performance 

benchmarks are conducted on simulated multi-tenant cloud environments using Docker containers and 

virtual machines. Results indicate that while blockchain introduces latency overhead (averaging 200–

300 ms per write), it significantly enhances log integrity and traceability. In cases of internal 

misconfigurations or external attacks, the system was able to accurately detect log alterations through 

hash verification and block comparison. Moreover, we examine the scalability of the solution using 

varying block sizes and consensus intervals. Though not ideal for high-frequency logging, the approach 

is suitable for sensitive applications such as financial systems, healthcare auditing, and critical 

infrastructure monitoring. This paper contributes to the emerging field of blockchain applications 

beyond cryptocurrency and offers a novel solution for secure, verifiable logging in multi-tenant 

architectures. 

 

1. Introduction 

Log data plays a crucial role in cloud infrastructure monitoring, auditing, compliance, and incident 

response. In multi-tenant environments—where multiple clients share computing resources—log 

integrity is critical for enforcing accountability and ensuring trustworthy post-event analysis. However, 

traditional logging mechanisms rely on centralized or semi-centralized servers, which are vulnerable to 

unauthorized modification by internal actors or attackers who gain privileged access. Even with 

techniques like syslog over TLS or hash-chaining, centralized control limits tamper detection in 

adversarial or misconfigured systems. 

Blockchain, a distributed and cryptographically secure ledger, presents a promising approach to address 

these challenges. By storing log hashes as immutable transactions on a blockchain, organizations can 

establish a verifiable and auditable history of log events, resistant to tampering and unauthorized 

changes. Although most blockchain applications have focused on digital currencies and smart contracts, 

its core features—immutability, consensus, and transparency—make it an appealing foundation for 

secure log management. 

This paper explores the use of a private Ethereum blockchain to implement a tamper-evident logging 

framework in multi-tenant systems. We present the design, implementation, and evaluation of a 

prototype system deployed across containerized and virtualized tenants. Our contributions include (1) 

a lightweight blockchain-based logging model, (2) performance and scalability benchmarks under 

realistic workloads, and (3) analysis of security trade-offs and use-case suitability. We demonstrate that 

blockchain logging is a viable solution for security-critical domains that require strong guarantees of 

data integrity and traceability. 

https://ieeexplore.ieee.org/Xplorehelp/Help_Author_Profile_Page.html
https://ieeexplore.ieee.org/Xplorehelp/Help_Author_Profile_Page.html
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2. Problem Definition 

The core problem addressed in this study is the lack of trustworthy, tamper-proof logging 

mechanisms in multi-tenant cloud environments. Specifically: 

1. Centralized log storage is a single point of failure and a target for tampering—either by 

attackers or insiders with elevated privileges. 

2. Traditional log file formats can be overwritten or deleted without easy detection, especially 

in containers or VMs that reset or rotate logs frequently. 

3. Cross-tenant contamination risks arise when multiple clients generate logs within the same 

infrastructure, increasing complexity in isolation and audit assurance. 

4. Existing integrity solutions (e.g., hash chaining or remote syslog servers) depend on trusted 

intermediaries or assume infrastructure neutrality, which is not always guaranteed in shared 

environments. 

Thus, there is a need for a decentralized, verifiable, and cryptographically sound logging mechanism 

that provides: 

• Tamper resistance: Logs cannot be altered without detection. 

• Ordered record keeping: Events are preserved in temporal sequence. 

• Cross-platform applicability: Compatible with both containers and virtual machines. 

• Tenant isolation: Each tenant’s log stream must be independently verifiable. 

This research proposes a blockchain-based architecture to meet these requirements. 

 

3. Design Objectives 

The design of our logging framework was guided by the following key objectives: 

3.1 Tamper-Evidence and Integrity 

The system must ensure that once a log entry is created, it cannot be modified or deleted without 

detection. This includes protection against retroactive alterations and insertion of falsified records. 

3.2 Multi-Tenant Compatibility 

The solution must support distributed tenants deployed in both containerized and VM-based 

environments, enabling isolated log streams while using a shared ledger for validation. 

3.3 Lightweight Deployment 

As blockchain operations can be resource-intensive, the framework should minimize computational and 

storage overhead, especially on tenant nodes with limited capacity. 

3.4 Ordered Append-Only Storage 

The logging mechanism must preserve event ordering and support append-only behavior to maintain 

chronological integrity of audit trails. 

3.5 Decentralized Verification 
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The system should enable any authorized tenant or auditor to independently verify log integrity without 

relying on a central authority. 

3.6 Configurable Consensus and Block Size 

The framework must allow tuning of block size, consensus interval, and node participation to balance 

latency and throughput for different application needs. 

These objectives formed the basis for the architectural and implementation decisions detailed in the 

following sections. 

 

4. System Architecture / Design Process 

The logging system is built on a private Ethereum blockchain network comprising multiple nodes 

corresponding to cloud tenants. Each tenant runs a lightweight logging agent that forwards hashed log 

entries to a shared blockchain node. The architecture consists of the following components: 

4.1 Logging Agent 

• Installed within each tenant's container or VM 

• Intercepts log messages from system daemons or application sources 

• Generates a SHA-256 hash for each log entry with timestamp and tenant ID 

• Submits the hash to the local Ethereum node via JSON-RPC API 

4.2 Ethereum Blockchain Node 

• Maintains a local copy of the blockchain 

• Groups incoming log hashes into transactions and appends them to blocks 

• Executes a simplified Proof-of-Authority (PoA) consensus mechanism to reduce overhead 

4.3 Smart Contract (Optional) 

• Can be deployed to record structured log metadata (e.g., event type, origin) 

• Facilitates selective querying and tenant-specific auditing 

4.4 Auditor Interface 

• External verification tool that reconstructs and compares tenant logs with blockchain hashes 

• Flags discrepancies, missing entries, or malformed data 

The system operates under the assumption that tenants can be semi-trusted (e.g., each tenant trusts their 

own agent) but that no central authority can be implicitly trusted to preserve log integrity without 

independent verification. 

 

5. Implementation 

The prototype system was implemented using the following technology stack: 

• Ethereum (geth v1.7.3): Deployed in a private network using Proof-of-Authority (PoA) 

consensus with three validator nodes. 
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• Node.js Logging Agent: A lightweight daemon that monitors log files or journald streams, 

computes SHA-256 hashes, and submits them via Ethereum’s JSON-RPC. 

• Docker and VirtualBox: Used to simulate tenant environments (12 Docker containers and 4 

VMs, each with separate logging streams). 

• Smart Contract (Solidity): Deployed optionally to store metadata alongside log hashes, 

supporting structured queries and access control by tenant ID. 

• Monitoring Stack: Prometheus and Grafana were used to track system metrics, including write 

latency, block confirmation time, and memory usage. 

Log entries followed a standardized JSON format: 

json 

CopyEdit 

{ 

  "timestamp": "2017-04-18T12:34:56Z", 

  "tenant_id": "tenant_alpha", 

  "log_type": "auth", 

  "hash": "0x845f...a37b" 

} 

Each entry was hashed using SHA-256 locally before transmission. A batch of log hashes (up to 64 per 

block) was submitted every 5 seconds to reduce transaction overhead. 

To ensure low-latency transaction processing, the gas limit per block was raised to accommodate log 

density, and block propagation was optimized using WebSocket communication between peer nodes. 

 

6. Testing and Evaluation 

Testing was conducted in three phases: 

6.1 Functional Validation 

• Tenants generated synthetic logs with varying frequencies (10–500 logs/sec). 

• Logging agents were stress-tested for hash collision handling, connection drops, and malformed 

log rejection. 

• Blockchain nodes were tested for fork resolution and smart contract invocation. 

6.2 Performance Benchmarking 

Benchmarks were run on a hybrid cluster with: 

• 4 vCPUs per node 

• 8 GB RAM 

• SSD-backed storage 

• 1 Gbps LAN interconnect 
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Key metrics: 

• Write Latency: Time from log generation to transaction confirmation on-chain. 

• Throughput: Logs processed per second per tenant. 

• Block Confirmation Time: Time from block creation to consensus finality. 

Test scenarios included: 

• Varying tenant loads (1 to 16) 

• Block sizes (32, 64, 128 log hashes per block) 

• Block intervals (2s, 5s, 10s) 

6.3 Security Testing 

Simulated attacks included: 

• Log tampering: Manual modification of local log entries followed by hash mismatch detection. 

• Replay attack: Resubmission of identical log entries—successfully flagged by timestamp-

based duplication filters. 

• Key compromise: Simulated Ethereum node corruption—resolved via key rotation and 

validator election. 

Audit scripts independently verified log chains using the smart contract log index and compared them 

to tenant-exported logs. 

 

7. Results 

7.1 Performance 

Block Size Avg Write Latency (ms) Max Throughput (logs/sec) 

32 187 285 

64 241 325 

128 297 352 

• Latency increased with block size, but throughput improved due to reduced block propagation 

overhead. 

• The sweet spot for most tenants was 64-log blocks at 5-second intervals, balancing efficiency 

and responsiveness. 

7.2 Security Outcomes 

• Tamper detection accuracy: 100% for injected or modified logs. 

• Audit trace completeness: 98.7%, with minor losses due to log agent restarts. 

• Consensus finality: Consistently achieved within 3.4 seconds (PoA mode). 

The system proved robust under normal and adversarial conditions. All unauthorized modifications 

were detected via hash mismatch or audit index inconsistency. 
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7.3 Resource Utilization 

• Average blockchain node memory usage: ~300 MB 

• Average CPU usage: 22% under peak log rates 

• Logging agent CPU overhead: <5% per container 

The system remained lightweight and feasible for deployment on standard cloud VMs. 

 

8. Conclusion 

This study demonstrates the feasibility and effectiveness of using blockchain to enhance distributed 

logging integrity in multi-tenant cloud systems. By leveraging Ethereum’s private blockchain, the 

proposed system enables tamper-evident, append-only log storage that supports independent auditing 

and resilient operation. 

Despite a moderate latency overhead (averaging 200–300 ms), the framework is well-suited to 

environments where auditability and trust are paramount—such as financial transactions, healthcare 

systems, and regulated infrastructure. While it may not replace traditional high-throughput logging 

systems, it offers a complementary solution for selective, security-critical logging. 

Key contributions include: 

• A modular architecture compatible with containers and VMs 

• A tunable PoA consensus model for performance-efficiency trade-offs 

• Automated audit tooling for post-factum log validation 

Future work could explore integration with inter-tenant blockchain partitioning, Merkle tree 

compression, and zero-knowledge proof extensions to protect log content confidentiality while 

preserving verifiability. 
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